Name: Class:

SCIENCE Years 7 – 10 & BIOLOGY Years 11 – 12 Hieu Le

www.peaktuition.com.au Mobile: 0404 754 848 Office: 0497 952 888

Level 1, 223 Canley Vale Rd, Canley Heights Level 1, 30 Cowper St, Parramatta

PHYSICS & CHEMISTRY Years 11 – 12 Duyen Nguyen

www.peakhsc.com.au Mobile: 0432 637 032 Office: 0452 558 316

Level 1, 262 Canley Vale Rd, Canley Heights Level 1, 30 Cowper St, Parramatta

STAGE 4 SCIENCE

TOPIC: PERIODIC TABLE AND ATOMIC STRUCTURE - PART 1

Classification of Matter

Elements

•	An element is:
The	ere are 90 naturally occurring elements and over 20 synthetic (artificial) elements.
	• The most naturally occurring elements on Earth are Oxygen (O) 47%, Silicon (Si) 28%, Aluminium (Al) 8% and Iron (Fe) 5%. (Remember OSAFe!!)
	 In the human body the naturally occurring elements are O, C, H and N.
	 Synthetic elements are made by humans in laboratories through nuclear reactions. They are unstable and exist only for a few seconds, breaking down to more stable elements.
Mo	ost things we use every day can be broken down to simpler substances.
•	
Ph	ysical and Chemical Properties
•	Physical properties are:
Exa	amples of Physical Properties:
•	
•	
•	
•	
•	
•	
•	
•	

	Chemical properties are:
	amples of Chemical Properties:
•	0
	0
•	
•	

Elements are classed according to their physical properties:

Properties	Metals	Non-Metals	Metalloids (Semi – Metals)
Physical state (at room temperature)			
Appearance			
Melting point			
Density			
Malleability			
Ductility			
Conductivity of electricity and heat			

Examples of Elements:

Stage 4 Science – Periodic Table and Atomic Structure – Theory

Allotrope

Allotropes are:	
Examples: Carbon	
•	
0	
•	

Exercise 1

Question 1

The table below lists elements that you might use in your everyday life. Identify where they might be used.

Element	Uses
Aluminium	
Copper	
Gold	
Mercury	
Sulfur	
Carbon	
Silicon	

Co	mpounds
•	A compound is:
•	
•	
Ex	ample: Water is a compound as molecules
Ex	ample: Salt is a compound as a lattice
•	
•	
	o

Elements and Compounds

Atomic Structure

Evolution of Models of Atomic Structure

	models and advancements in technology.
1.	
3.	
1.	
5.	
نامة	id Ball Model (Dalton – 1803)

Models for atomic structure have evolved over time due to the work of multiple physicists to create accurate

He was influenced by a similar model by Greek philosopher Democritus, who had his own theory (that atoms are infinite in number and eternal) disproved by another Greek philosopher, Epicurus.

Figure 1 John Dalton

Dal	ton also stated some atomic theories:
1.	
2.	
3.	
4.	
5.	
Plu	m Pudding Model (Thomson – 1904)
•	J.J. Thomson experimented with electric charges and cathode ray tubes (used to produce pictures in television
	sets in the 20th Century).
•	
	Cathode Anode B B Fluorescent screen Magnet
•	Thomson expanded on Dalton's theories, likening the make of an atom to a plum pudding.
	Plum Pudding Model